Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231023.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231023-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231023.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231023.tar.gz
Algorithm Hash digest
SHA256 851005e72176978d942a086bfccf7fcfcb8d6c4711506055582a7c8566967f13
MD5 e581d9b0d1bb6c5e6508813097f66dc6
BLAKE2b-256 afcf6988b461ac634c898884864cddea088c89b8789c3a1fff20cab429cf4594

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231023-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231023-py3-none-any.whl
Algorithm Hash digest
SHA256 01bfe9182abc0918b1e2db23d6085fb410fcaa91e7515e331e978de3b2f74cb8
MD5 121e3414a8fa743a7d8fcb018d2b0f1e
BLAKE2b-256 0fa575b35b114183ad5647f69146a130726c5d29aca5c1bb65dd6165fecdf8a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page