Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231024.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231024-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231024.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231024.tar.gz
Algorithm Hash digest
SHA256 fd7693be78dc94f24a0d2975067e79e8c3ec7424fe4e17c7635a5ce33842b452
MD5 ab2a3d13714362089ac368cfe23a9247
BLAKE2b-256 0e01c8e0c9a1511f8f1ca79f016b7f5287319ea8f88a56faec5e36c251c7bb9c

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231024-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231024-py3-none-any.whl
Algorithm Hash digest
SHA256 26cc895d45bc1e88b65165f013b38ee2fed2e5a825f11fa456ea01e8dd593802
MD5 955a1aa96b69609b3de7dfa4a101863b
BLAKE2b-256 2214b8ed40130d2e5388c1376d5c4743f68ca71b7ebb052d8a9523d77381d73a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page