Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231026.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231026-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231026.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231026.tar.gz
Algorithm Hash digest
SHA256 5677e9636bf7483c8ab9fc7d37fe394911d0465f15d82abbd049563f5ff67659
MD5 032eafba688efe026f04694eaef813cd
BLAKE2b-256 3436a34bf4f6fbf82ca614ad923ea3effc7a4936b8cd5c6c9dc0a8ea10b5b27d

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231026-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231026-py3-none-any.whl
Algorithm Hash digest
SHA256 cc9eeb872e002b5fd1d22634219b450627429153cfbf5cb9c4dc4790145e88e4
MD5 159eb3fe57d60677cbbc4a549471e53f
BLAKE2b-256 89b30e4104d1a04f4566dcf18631e74e489eac67feb21adcbeb1c29de96d31fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page