Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231027.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231027-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231027.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231027.tar.gz
Algorithm Hash digest
SHA256 7a2cd5dd4b96a289c7623918849bca7be342ff2ce72cd7063dbf1a4edce14719
MD5 1c6a5c39c6528f3a7a4a8f384c48ac57
BLAKE2b-256 f6bc7bb2485eff123a2246ac0cbcdc210314f3c3a2fe89248e1bda1f7a7e45f0

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231027-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231027-py3-none-any.whl
Algorithm Hash digest
SHA256 ea08e6d04efae40f7548de5be37fcec423f80fe6b853991c52d1e6734f8d5344
MD5 c2257f3ad8301bc4a7df2ac15d54dae7
BLAKE2b-256 bc9a5baaaf739902243cc38ce110ce3bdb2bf902fc9a1cf1c994b256a63d2ded

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page