Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231028.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231028-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231028.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231028.tar.gz
Algorithm Hash digest
SHA256 f09467b8ed19d7ffffebef51f676ee714b0aad283692187879a38eaff5f5512b
MD5 c998e0c633ee90f4d0e98e1210c74d76
BLAKE2b-256 a9cb2c7b5eb6aa6912ca6e455c3310ccdc720fc62b36295002519400a738950e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231028-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231028-py3-none-any.whl
Algorithm Hash digest
SHA256 f3960ada85d119cad8fe85dfed7f6f3c334ca9f7641e7fccb3dc5e82ef78e5fd
MD5 67704f368229ebe1617b6083113bac57
BLAKE2b-256 7d537ce79f5e5ef3bbcdb292c3314718002d0cc041187ba7d29c22e0f516803c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page