Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231029.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231029-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231029.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231029.tar.gz
Algorithm Hash digest
SHA256 a2cdd841c1d381ff5fb1e625abc354fb8d8f788e535376d3403c19327020aa92
MD5 9ba7a73dee69a9347b9c9749e9aa9374
BLAKE2b-256 40d5c0d5e021c3d856e8cb8d095d792f4db199eab10824bab788ac6de9ec3506

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231029-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231029-py3-none-any.whl
Algorithm Hash digest
SHA256 7589145df6a9067628531a20379845096f3ae7e08f87d9613f299e72c6e0aa45
MD5 8234e19c6eb4ea68aee6745c0ef2897d
BLAKE2b-256 28e69e993d0497c2ca18c821eaaa8f8ef393065e2b88709cb64782775effbb3a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page