Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231030.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231030-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231030.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231030.tar.gz
Algorithm Hash digest
SHA256 e20abab0bfd5b7cec287dd374ee43edea003d5f04a4da888f7009756a1761fa4
MD5 0cd5cdb10101abfbcbdd4fd5d0427bb6
BLAKE2b-256 af41ab8d3cc9cfdf6f39325e5e15a8b80dfd8a8d7b5fcc7c99bf544f49b19db7

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231030-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231030-py3-none-any.whl
Algorithm Hash digest
SHA256 77f6e59c9018bb0a103e9a9bb5dc3427f1ac356e531e752bae8bf2a66fe65b62
MD5 34c61c7e1248f47c6b223f643e333fe3
BLAKE2b-256 a654f5da0c6602d7c129317dbdc229e41868ddc5d47807bbc40db60b0e615d3a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page