Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231031.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231031-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231031.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231031.tar.gz
Algorithm Hash digest
SHA256 1e7e12c19766ac48d3272490e7fd2524e64d7611535e06bc01fa6beb491d69f3
MD5 efa4d9de8f3c7628b347368dea749d69
BLAKE2b-256 1e9d70a7b64157d6576dc08b3703fd62775dbeee1bcb8bb659aebef2ffe07855

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231031-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231031-py3-none-any.whl
Algorithm Hash digest
SHA256 fee9a86da957cb9670bf53a18f677d20b771301e3d35d492b267a47291c6f77d
MD5 23f7fdd7196d1b04a1264728d108acc2
BLAKE2b-256 0b2a80b4d2084b9ffd842e2942795b0cfc7c8b031453b99200e69a3009fe7d97

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page