Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231101.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231101-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231101.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231101.tar.gz
Algorithm Hash digest
SHA256 13e8a33c94907b48637a1bd64d3291344b9339fd3e85bfd93b33a35c5257607b
MD5 689a8bdd8ae4d2b0fd01875442b1372c
BLAKE2b-256 ce3b48006e5cbd24430037734c72b82023c2516a2290a7246d66cd3510c735f6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231101-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231101-py3-none-any.whl
Algorithm Hash digest
SHA256 cfb51c4197c1ff6bba4d16c9a118a21e1e79099913c4285ad5bfaa6745e445a9
MD5 fdeba985fe432b7a50e4ea0419c77d84
BLAKE2b-256 3cd5d0b9923c9cf98c36e55c22401fa6234b21fe848c2ca06bd9b845a8ab6482

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page