Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231102.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231102-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231102.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231102.tar.gz
Algorithm Hash digest
SHA256 908d4624ec4a80a42ceef114f3fe54193d887c7642f1fe7bb6a82a7815d02539
MD5 e0b3b08ae03c5c05be8e940189b6999e
BLAKE2b-256 e9cbcc7642c285d80d2682983d2875e876b23be5e04a53ab213a40c6e2fa72f9

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231102-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231102-py3-none-any.whl
Algorithm Hash digest
SHA256 4a4dcfccad702cba41779cc8ae165d09c5907ee8663df417d26b3a66b495a9ed
MD5 2119ce83f455b3b84f67b6199768c6fd
BLAKE2b-256 a33f9144edeb0c41739ae743de61a0ad94a1bbeaa6cb64aa1efe3a5225ddcb04

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page