Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231103.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231103-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231103.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231103.tar.gz
Algorithm Hash digest
SHA256 def98b63b6d0ec0ba314294a0b05754003a75b6a63463d6f14849f14b1649a08
MD5 9a55f4d25c087bcb01fa3f6fd0943789
BLAKE2b-256 aa0f4b115a46c21b5cdbbf9285de327bf5381e757a187e247cf1b55dc254c81f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231103-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231103-py3-none-any.whl
Algorithm Hash digest
SHA256 86302d54e0d0aef291df43f54c9fde273f15d569ce91b23a619597578212fb68
MD5 f22c71bf4bd099afd239c7d6906c74a2
BLAKE2b-256 6737613128d604600558352548f141b637c2647dd559c69380e36219d6bf5881

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page