Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231104.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231104-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231104.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231104.tar.gz
Algorithm Hash digest
SHA256 ef7d46820ab784ddef36df210f8b5b756efb890967eb3a2f0b5b12354707ae45
MD5 472ada80a04fd741d8cc0c1df85f4978
BLAKE2b-256 f6d4b29e1f8914151f36dbc3e9c10098177c71f26321cce9d81e88741aa24144

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231104-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231104-py3-none-any.whl
Algorithm Hash digest
SHA256 adc601952f073de5d2c342c555953385dff7d8c1913da9e25d66b564d58c9af6
MD5 fc661f2b677c5c9d84cdbfc69688d363
BLAKE2b-256 bf40f6c2f0e297bbc841842afb6090ea9743e698546671062466ab31743a76bc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page