Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231105.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231105-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231105.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231105.tar.gz
Algorithm Hash digest
SHA256 448e4c2d7e0205d46bbb113ce9f1ac6d6a5dc3ff49cf0cfb01d38c42221f049f
MD5 b478ab67af6ee55e90afc7cbc1b71bcc
BLAKE2b-256 d24a274bbc50a743d0f38d5b2307a1a20eca0c34c0d4f0bee2924544db56a0da

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231105-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231105-py3-none-any.whl
Algorithm Hash digest
SHA256 d91f2d76be3aaf5ed8529c84e5f351a018fed87eca83b0ccdfbb9e55b560abb8
MD5 154207a1da42cac106d32c1c83b30735
BLAKE2b-256 68c3f3398a6982e932062754a23918c4b52df11c596b995320002fd64fdaa1ae

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page