Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231106.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231106-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231106.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231106.tar.gz
Algorithm Hash digest
SHA256 14b6dd01acca6a808cf31f85c6cda413df758d63f7f83f10b9627321f0875160
MD5 3a722a90e15ed3545559d8539fe1fa69
BLAKE2b-256 5a4ec58c2e27cd5b2651f6ed5093d7bce2ce98f870d8d42a77cef5e1b3382baf

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231106-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231106-py3-none-any.whl
Algorithm Hash digest
SHA256 e39d24820529be7d26a58fa424a16aaacc1edc8673fc556ffedfc035c629d853
MD5 f8bb63bfbe9cad81a0b8bb49b2361ae8
BLAKE2b-256 65ff0e122cc9f2774e39717db5545aa11d62516060fbf3387f230c83ba24c0f1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page