Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231107.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231107-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231107.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231107.tar.gz
Algorithm Hash digest
SHA256 902dd58fb03cd2ab0d25419a0cc82484fa7ffe46ecca8ccc22280b59ea3e49f8
MD5 2f97e041c0dc64ac4f0106d939f17519
BLAKE2b-256 996be6dba8648c1fcd3883897a03545356f58cd42fdb081af6841a075708df96

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231107-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231107-py3-none-any.whl
Algorithm Hash digest
SHA256 7bac0b2f0ed1955faebb392e4fdc86544fc5847d744749006563b714e48b62ed
MD5 c921bb9629bfbd75ea21f44898e08dd1
BLAKE2b-256 f1ddf14cdc72462afb81cb7f9a53e664ca25fa60b5cae8f1cf5c56257b53b9cf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page