Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231109.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231109-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231109.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231109.tar.gz
Algorithm Hash digest
SHA256 80e9bb82610ba5e44c9ccc44beefe2f85d41fa33dc64b039ced6a7b3f96d8b84
MD5 779cad97b96b789a314b2f8ece2ee248
BLAKE2b-256 ac1d3a118e4db22b38a32b20172a4bb1e784e499adba7c124a596b21ce669d63

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231109-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231109-py3-none-any.whl
Algorithm Hash digest
SHA256 9304fd9cabb0be70badafa30aa7cbc83ee172f7acd880bf9d77e1cb92fd86c2e
MD5 1f4f4299bcc6941d027271fa8c74e967
BLAKE2b-256 2423423e62d8398178809de3e1805c3d04ad337e6d0962354694f1eaba7b0061

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page