Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231110.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231110-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231110.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231110.tar.gz
Algorithm Hash digest
SHA256 550f92a9a17b395d7aeb59b2d70ecc1a3faea23e4b39ae8a3a552c8abe5af1ce
MD5 14ff4b533c1ad7747330ebfb55ede95d
BLAKE2b-256 44255379741193322310fbd58df0c1b59473fe380d8878af06658aec7b14fd78

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231110-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231110-py3-none-any.whl
Algorithm Hash digest
SHA256 399a63de83530fa8a1373f656337c3c5881e6801fcfa578cb4532129cc31b80f
MD5 42418168513f8ecd9b215f536b4a5fa7
BLAKE2b-256 b80846467f3c485e71d6922523f671e56cda74306499a4512a47681bdb28c823

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page