Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231111.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231111-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231111.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231111.tar.gz
Algorithm Hash digest
SHA256 f5222660adf5ecb49c89a1155bf4c8fe0accb3f38a25a9367480a24e6b39d618
MD5 ef176f5a3a3f752353458919a0c35301
BLAKE2b-256 49900437ad90a234f6f124e74c9755f4877139a44bb1ffda6faf157f1a070e54

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231111-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231111-py3-none-any.whl
Algorithm Hash digest
SHA256 c66e3576965d266428d77bae3b792c7ed75ce281059bdf742e282ca91028b2c0
MD5 0c2333fedd2aa5c33ec4c71329036eb2
BLAKE2b-256 457948df7d5599b8bc6a37cfc086320e970a2e5322ce7c2989afe38de5121bb8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page