Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231112.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231112-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231112.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231112.tar.gz
Algorithm Hash digest
SHA256 064cff33d61a3efb9085e774b265239dfa6e33a64113437184607f0ed924f569
MD5 9db632cba3a7310a558095faf1220990
BLAKE2b-256 74953fc1f466b867727b4d68b0c22160b9a00fce789bf99d2818a6de06fb69f1

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231112-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231112-py3-none-any.whl
Algorithm Hash digest
SHA256 66f12bd176e0da1f7feec26edaa7039a7bec7393a8fc5d8ad4eaa80d1b6bb55f
MD5 1bb3b1403e9505795432a91876c089f0
BLAKE2b-256 5d4b1ba2b192dda76d2bfac9e64e8701e4bfc983418aabcb730bfa4f046ce246

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page