Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231113.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231113-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231113.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231113.tar.gz
Algorithm Hash digest
SHA256 bde2785ef42cf2584c6620c27f02dd8e3415cd2e7026ec77952108e732acdd4b
MD5 0b2dc9fe96af39d96774d783745fc0ff
BLAKE2b-256 741285b2d577941c7959bc269f7f1283eadc1d32d15a1ccfd402f7d5ba3d1812

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231113-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231113-py3-none-any.whl
Algorithm Hash digest
SHA256 c88c5fcc0d58454c3b4d230c849fd2eef07e75f6d92d42b4dfe7233deacc1ffd
MD5 dfd01343ae0876f7b7a23fe27036d869
BLAKE2b-256 937cf4ca10aaf8b7d5564ee58f61872a4b6fff58fbcea8de48050f013b95824a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page