Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231114.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231114-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231114.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231114.tar.gz
Algorithm Hash digest
SHA256 e914728c3566f4f57d5051c2d3441bffeed929573512fab0727b03d22db948a9
MD5 aaa630524dbe68d35172c482faa34e17
BLAKE2b-256 030a420cbd971171be10502c3690c63a4be66eea8d4340ed6d6e898134b1acc1

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231114-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231114-py3-none-any.whl
Algorithm Hash digest
SHA256 9f72a53f9cfd67a6ddeeed72cc5aaee82cf6e0108a65d91360fc47d870c184a5
MD5 536b9933b48face8ee2f9cca5ef40c63
BLAKE2b-256 c3ee4998e4c136a9c3a88127ceaf9668fe8c131f3543ab92c12a71f1ddac5251

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page