Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231115.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231115-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231115.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231115.tar.gz
Algorithm Hash digest
SHA256 ee661b95f1cee90157019637f17276794f9e8bca1e964a35e5f1d71b3af1282f
MD5 dac2b9d0cca1379d6ebe5543cd99a851
BLAKE2b-256 b4d7a92e2d0e426cb5924d284309c021d293c350340200d14d72e6a930d2a492

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231115-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231115-py3-none-any.whl
Algorithm Hash digest
SHA256 a8085a5d3f1b82facd259ba7d9ad65611599e2488e0ea282f2a881108c879e5d
MD5 f48be7321b4f889bd42b22c101105542
BLAKE2b-256 44356114bc2ea8f509d59db91c5381f096ced2b4b9554af2815a09709d497276

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page