Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231116.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231116-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231116.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231116.tar.gz
Algorithm Hash digest
SHA256 1de71a7f12dfa86d9aa7df829ed70621101197f2abf4a71334c7790673011f18
MD5 9edb89e498cd246e4107e4331fca9d24
BLAKE2b-256 d1cfbe250662a9a866798503d7061036c9c06db069270877b1bd311eeb3c3c4b

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231116-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231116-py3-none-any.whl
Algorithm Hash digest
SHA256 21ff387051eda85f29e6612eed07459168379b4cabe4136558badc54bff5c845
MD5 47481d90908c096d60f24fd985fbde61
BLAKE2b-256 c099853a74195a31e7d6785ef95b8968a502fe9a0f7e0ea3e6e3e23bc0072cb4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page