Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231117.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231117-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231117.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231117.tar.gz
Algorithm Hash digest
SHA256 68c494ceee716b3e0e75bb30362c90aaeda034deb489a8910dd758a171ce8830
MD5 536d0ba834973b516fe9da5ad04db590
BLAKE2b-256 1a2406b347fa91dcbe103b0fc48b28fe856f32363a28638a0f21d88bd446f4fa

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231117-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231117-py3-none-any.whl
Algorithm Hash digest
SHA256 6726c5b805d3fc51af467ad043b4a8d9019e2f016133cce51957084e4505a9e0
MD5 837f9fa6c905dc2d88c1892fe8a79ead
BLAKE2b-256 5ff6466eaace76d5cbbc9b597b32a4df7650dfd6c81848303e1b911fb795eb17

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page