Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231118.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231118-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231118.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231118.tar.gz
Algorithm Hash digest
SHA256 300679a515a14976509129c765660a2b4ce893ee4d2e9517131443bfaee03d7f
MD5 0632a83e2fef23878d0be687169610cb
BLAKE2b-256 d97dbd9c2bb374f50c78e23434cc2dbfbfe7613843623055eef169a37a2f2326

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231118-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231118-py3-none-any.whl
Algorithm Hash digest
SHA256 ea0bf2df1cd9d1651fbef75b4d2b3458b8cff0c263465c9a7363e5768b2bdb7b
MD5 5b63dbbbad26040fdaad7eee4f2e49ed
BLAKE2b-256 bb783e3f5e6a1813c1d901a5e9d00b2f06add657a18cd92a9a4ace221bf1ae8f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page