Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231119.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231119-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231119.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231119.tar.gz
Algorithm Hash digest
SHA256 0cffd928f804d8d709efd75499e97c68752965a36efc7e1fa50edbc30823ef44
MD5 04397e4a64d715850fc57d3362dc7699
BLAKE2b-256 a837c2a3ff3bb7a1d5076b9de5e2c7f7937bafcca298e6894870277b468f73bd

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231119-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231119-py3-none-any.whl
Algorithm Hash digest
SHA256 69d81edc2ffe6535093ae4e504de98a4526b2a87e99897229c983bc1feb3f032
MD5 a8304e4c643307b8c84ba3cd15beda40
BLAKE2b-256 69342c9fc92be5eeba4a200b5495115c058473f85b93f60b66ca7b39c5256501

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page