Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231120.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231120-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231120.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231120.tar.gz
Algorithm Hash digest
SHA256 aaf0c7a137b6b0b7a3619b4e68bd744958f3f7b587d53b3912499ab762edf37b
MD5 004cd220cf41ab40a4eba5d7a7f534e4
BLAKE2b-256 c81691e0dc8d37d9ed3bdeb0a2fc8708675bdad4b88dbfa9be4483dae92efc41

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231120-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231120-py3-none-any.whl
Algorithm Hash digest
SHA256 284bc42839efde75dbd36478d2585e20d54b2da11c0afe88c0d11b8593b70bb6
MD5 4e9974e3099acecfb500c415e9f5530e
BLAKE2b-256 6d9c569e31f0cd02c3723084370422171b02b448419a7fe6ade516476cd2f13d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page