Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231121.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231121-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231121.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231121.tar.gz
Algorithm Hash digest
SHA256 bf55c2ebec2320c3737962a62e9f6afaebca24468ba595a3e5389716dd968d42
MD5 7c6e25ba70d43f8bff9aaae37d59062a
BLAKE2b-256 90a8f2874993657df942bf299f7485ab8cdc842f877b560bd469abe162cef6db

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231121-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231121-py3-none-any.whl
Algorithm Hash digest
SHA256 80e2476166b1abe844f1c4248e7dd81323f6ab6aeae22f9e396e99b987f8ad80
MD5 edbd14268b2885ac167a5740870a4a36
BLAKE2b-256 b462077280eb345f2f1332ab6440ab45cc8c1f88d0d93a57208bf8d7480698ea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page