Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231122.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231122-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231122.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231122.tar.gz
Algorithm Hash digest
SHA256 3d6df0a43922928ac3f43c317c371bd1366eb1d275e2d50f40cb3556fa2881f8
MD5 70eaab87350a6474cf7891f9e5969f48
BLAKE2b-256 cca529e8b9ded4fb0332921120a9119551debe0b888c083963b72b983880e314

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231122-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231122-py3-none-any.whl
Algorithm Hash digest
SHA256 3c4dc8e6e87b6e6e050b54ab8bbda764afdc806a2230067d25d75a71b9a284af
MD5 80bdaad05b5d15565c79f505a5873aa5
BLAKE2b-256 bec63f5ed46201feb4514d037f983ee0316c3cdc5d84e69abe25982e9b19ebe7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page