Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231123.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231123-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231123.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231123.tar.gz
Algorithm Hash digest
SHA256 138d0ad8e49cea0203458751338fe07e197dc340d3a77997d32bc4f05378e967
MD5 c57f3564f1fb32bfea2319a71151ad03
BLAKE2b-256 e4a6fa2c7f6d7aaf4c65c578ddf5ca016c16dde736715399dd7d98edac600d60

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231123-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231123-py3-none-any.whl
Algorithm Hash digest
SHA256 d817d9d93e7a5b18e1c85ac24a15c2130cec440affee0cc210d06c8dbb88c622
MD5 c9b347fc20517291826aaf1f77213178
BLAKE2b-256 a2859248296c37c06ba06fa5c742f7a73d09d070c65528b19d6495d9ccf5d9b6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page