Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231124.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231124-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231124.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231124.tar.gz
Algorithm Hash digest
SHA256 c69465a6f3c991e5a72ef3580a031567959a393afc848e48bd68b16fc1dfe0fd
MD5 a3061835e300f987793fb5c4238aa091
BLAKE2b-256 078061e7899f46d21963c271a27d0d5f8e0b4ecba9df5bd8f32d5313b9b541f3

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231124-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231124-py3-none-any.whl
Algorithm Hash digest
SHA256 f57d710483a2de8bd7bbf6c66f1050e22fc05cee2484e3d1e82493bc3a2e65d1
MD5 8cf7bb3aff068063dc33c8af37152df5
BLAKE2b-256 26030401f4fd5b4c8ea439b18091ee68e02bc7c97e3d3c87eacb63b25b2dc356

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page