Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231125.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231125-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231125.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231125.tar.gz
Algorithm Hash digest
SHA256 934633d37b2e44a3e383b805e5cfbae67d3bcae3a0f698c7a7791972a3e95524
MD5 f775916c622946a80cee9a9dbd79586d
BLAKE2b-256 393f90541f9700783e73b6d0bf075e42a8b070dafee8ab4dc2defa6c707f59c7

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231125-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231125-py3-none-any.whl
Algorithm Hash digest
SHA256 ad640bc10088f469489edea380e1e8e8000c343d39b15bbdebb1b16e8cc996b1
MD5 c7d7f033436136971038559bddba290b
BLAKE2b-256 eb958804719de15c98eda19103b2cccb8efc8c6d2313a374f87cb3b191535980

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page