Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231126.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231126-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231126.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231126.tar.gz
Algorithm Hash digest
SHA256 37cda38b59b07533b5db59400ed890d5b54f65049a74dc2f30de7808c64e2edd
MD5 c442dd905f7a0358931726aa63d1716e
BLAKE2b-256 ca16593937f076f16adff5decd66ac2aed2d8088c546e8d73162aa6701bade65

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231126-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231126-py3-none-any.whl
Algorithm Hash digest
SHA256 87b3b156f2cd8287f11a501d3d3830363a2f0a53747f7a6252f238855e1e5b35
MD5 9a4afdcc6bcd5b9d38c9466e64fd934a
BLAKE2b-256 912130926c51c435d349d106877127fa774def8fe706efc951e6415adc457807

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page