Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231127.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231127-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231127.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231127.tar.gz
Algorithm Hash digest
SHA256 b72b2a94c4bf3f398b2b0d756bfb7970720daa6d284d7ef6aede916457ab5b5f
MD5 76a486cbfeacb8c9dee4abbcafac5b77
BLAKE2b-256 7cebd51d3621d2b0ca14f2ab3a078ca4a64b1478246dc87ea38fef7e1b234d52

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231127-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231127-py3-none-any.whl
Algorithm Hash digest
SHA256 7e299f68d194e03c83097480a943cc9ad8510538ea20dd5973a876866027e65f
MD5 e4cf4b23b7dce2c92941dfde8cbcb29d
BLAKE2b-256 70f38e5d2dd032b675045a1b529e3e45fecc04e92b16ba1f1ff2afc5b23c4fda

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page