Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231128.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231128-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231128.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231128.tar.gz
Algorithm Hash digest
SHA256 a15a87818e33acc22f57c914176e246f6db36d78a66ce48d293fb6a97fe18660
MD5 03cc97edbf9e7f3c58b853798d88d312
BLAKE2b-256 81fe47b9c664430c48d61a81f47064370c43a119b533a1da5b297be8941d0aac

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231128-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231128-py3-none-any.whl
Algorithm Hash digest
SHA256 8cfb05fa0d00bb23f38c9b4be692878123879c8255ebf297d14f3661733c56e7
MD5 30b3d322abf408f16aa365f088e08140
BLAKE2b-256 4122d8729789e418ec035653ad1346e6ebdb1b66b406f58735987406fd57c14c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page