Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231129.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231129-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231129.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231129.tar.gz
Algorithm Hash digest
SHA256 bcc55b8c1a18960eeb0f86be045cd3a7cfba1dd85b904a8298ac942a0214d557
MD5 238c3e7016ffeee830adac7182c770b7
BLAKE2b-256 cc6af74f3e8ce4560a2a9f320d9a57c9c64dc648b91f73f44f6c8240927a8926

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231129-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231129-py3-none-any.whl
Algorithm Hash digest
SHA256 de6676deae2a6b3a01766e031d659da5f972fe3be32ee164d7a68ca96baa71c1
MD5 9f40aca25b062dbbdb94276e18df0f40
BLAKE2b-256 4d7d3b830d08f1d9f8a08387c385e613d71a12fe20c0c25d91c1c133c80b4e64

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page