Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231130.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231130-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231130.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231130.tar.gz
Algorithm Hash digest
SHA256 49275bc611eae5c716e4f22292cad920a510e0a02f9edd593bac3250880cdd9f
MD5 bd85dd840b1884584aefa9606187c8dc
BLAKE2b-256 75cbec9133b196ea14bd172ca88ef32fccdc4fe3f258cc649a16e563946144e6

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231130-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231130-py3-none-any.whl
Algorithm Hash digest
SHA256 7174dbae1065e6dc3d95002882810b1102994ad6fa38217d53af1eb625ca562f
MD5 c6473f2ff4804e252967125406e34335
BLAKE2b-256 aeecb9398c1b858bcab8eb9554d3b25ec446f903c697fbd0204f453a0e5db935

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page