Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231201.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231201-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231201.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231201.tar.gz
Algorithm Hash digest
SHA256 e59ab308693cecbe21980e5ac67ceec850d78e86491e0e007ae5497ed8a2a5f1
MD5 5f7a986c62daaa4dd4949ec44b7e66b2
BLAKE2b-256 4c169e1adcfe2bfaf24f67e27d7618cb4b0b645c425b03130fe33da4260ea754

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231201-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231201-py3-none-any.whl
Algorithm Hash digest
SHA256 04c59472d3cc0f1c1891f5225ac3afe77c2e672e9108bf17a33e6d7f30eb8b9f
MD5 74905231ca464bc3161c93f6e364d065
BLAKE2b-256 d14f1306560c0c32126c750759b847f0ab12789670f303c58c822038c829a227

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page