Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231202.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231202-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231202.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231202.tar.gz
Algorithm Hash digest
SHA256 86e43df55be777c6ce9a08d41d16bc9c24248cb82725a4554fda8d42c2d5a317
MD5 f5823f77d9218fe324191bff5b574afd
BLAKE2b-256 d1d1aa07251a6aabcbfb17a13179ba2083e0ca1dcc33846e0851f04eb4b24685

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231202-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231202-py3-none-any.whl
Algorithm Hash digest
SHA256 6d51da619d7b84014b4280be1ae8e5337c926d8791fae7e1efb63df69c85c969
MD5 a522c26a8dd5511c6c6706fc849c70a7
BLAKE2b-256 78604025bd705e3e011abe1040a88613a87e95c8b4d0c2d95a0fa7ed26b17c74

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page