Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231203.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231203-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231203.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231203.tar.gz
Algorithm Hash digest
SHA256 8b56f87df68e2dd6874a6115ee7d13d1cb4e275deff598229f9921f56f79ca3b
MD5 ab9d5b74025d8797cc6e05501c33f218
BLAKE2b-256 6fd1e3da3b98910ec8f94880e0674d5edc041dfd0d520ecbe94f31914a2e4e7a

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231203-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231203-py3-none-any.whl
Algorithm Hash digest
SHA256 440e11360c15eed802133624b1675c91b7974f5fc699afa01d1ac01ada01465e
MD5 29974f3fa2c191d93eee2940adc80399
BLAKE2b-256 14818902eadcb38a81cfb78addec7a0a70d1cac9112996f8a0bc051e6ec0a2d7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page