Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231204.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231204-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231204.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231204.tar.gz
Algorithm Hash digest
SHA256 dffc161dcbb8f08af505c38ef5128f681313191e28d531f56cc90d083a42bd46
MD5 7d0e4509d3f02bf2eb71831553994814
BLAKE2b-256 55e5468606ea5f0764af36c3215c156d1bb424aa3a56d68056fa8935c1386f54

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231204-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231204-py3-none-any.whl
Algorithm Hash digest
SHA256 3ce7c846745bbe341057b89ef5df4e92763a35bf801046725d8090fc5891b743
MD5 50eb82dd723bb14871bc8056bdb6e4a7
BLAKE2b-256 35bcbc0d025f9a8cab664d423a35611d20b122fb42c989cc7003132801fc51e4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page