Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231205.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231205-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231205.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231205.tar.gz
Algorithm Hash digest
SHA256 1117014a0689aeb53230bc8deecb7f17930e76163a9edc045876eebeb1ab1641
MD5 40d7c9dd1322ff38fd44dda2afb72550
BLAKE2b-256 f5353b30beaaba245d1d73b0c07bfae3488668ea53c5e5323d7ae764112317f9

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231205-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231205-py3-none-any.whl
Algorithm Hash digest
SHA256 0c0ab584600cdbbf8a004c1baeba9fa7c231f4e17bedbaadfebbe50de1d260d3
MD5 47bbab412abe099e6b01606640ac6da7
BLAKE2b-256 4f6d550916fa8f2a4c033fcae172a14f1a305aa9b7622d76ac4057845d74cfb9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page