Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231208.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231208-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231208.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231208.tar.gz
Algorithm Hash digest
SHA256 83122854b91dc3f4d9d4112bb89a1bef4bcf97d892e64fdb53c5d9ddd22397d4
MD5 bfd58dc68742700dca8f2274c774c7fe
BLAKE2b-256 c8ec9e751a0e683e2ed669ecb6991c15bf1ff8541b0267b0166352ba63e3c24f

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231208-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231208-py3-none-any.whl
Algorithm Hash digest
SHA256 3f928363c654b033bd3b054b399c85d1d1896c7b2363f9eec4d25309e939e033
MD5 e31fc5920d055a33f6ee10d37ea2644c
BLAKE2b-256 1c584be6bd0be4dccb31ee006fc0e7142ff7aeee95bf0bbd6c620026f7a982a9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page