Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231209.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231209-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231209.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231209.tar.gz
Algorithm Hash digest
SHA256 e418ea09a5736d9995678839f45768fef398080cc334a32bd7f64e9fd902ec3b
MD5 3ca3be23c0cc6627da01f5d38f698180
BLAKE2b-256 809ef0c6f6fbc67c560badb24c25eecf17c35413bc974e266264053f7cc917d3

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231209-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231209-py3-none-any.whl
Algorithm Hash digest
SHA256 d6e56d73635efe2f2b3b55fc1466f1eacc38d70b767ec6999f16467d39b2e59f
MD5 1df159d16d4088883879decb86f0937e
BLAKE2b-256 a6347839a6c0cd6e38c4c810f0656e60ee9a3a5d540182ba1d032a6c4e58d6b6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page