Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231210.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231210-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231210.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231210.tar.gz
Algorithm Hash digest
SHA256 e5dfcaf022e6c4230006d3914251b49dd1886731d1eb37ae1e5fdd911a554d5f
MD5 2a9df00c3e2ea13966a205cfcd2fc13b
BLAKE2b-256 e42d999fb93f64e6cce941b2924f669be1759738646cbe95782916d8b8464f2e

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231210-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231210-py3-none-any.whl
Algorithm Hash digest
SHA256 14e62d2cc288dc8cb9cffa6b511cfbc6aed4fef0094b4a993d7fdb7f3806e336
MD5 10bdf20dab207bf969ed0007c3c2f91c
BLAKE2b-256 7b18aceebe0f19e37cf15dad62f4ef93584d40f71a1b6ed18a29b0a1a8d8afba

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page