Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231211.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231211-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231211.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231211.tar.gz
Algorithm Hash digest
SHA256 b26b5a618b82e1b63bd712a22c4259a76b754d83acac475e3196e7dac179ec77
MD5 49e3781f5e46c80a5efeb876a7ddf39f
BLAKE2b-256 9e5fba77bfb4c6723553568f44881f27f50e0b482413d913e036e4d4aec59b89

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231211-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231211-py3-none-any.whl
Algorithm Hash digest
SHA256 2da8cabecdbb3db7d062a4d40ff0aefef229af0fac5f983347ad541d984f3070
MD5 2c277cf6bbd88a737e2050b76f9ad066
BLAKE2b-256 0d0858e47361c535917e2cefb79312658e979897a1b0c4d67669cddc91f3de79

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page