Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231212.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231212-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231212.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231212.tar.gz
Algorithm Hash digest
SHA256 1c9fb3a9b412fb60e74f0287d9f2f75fe94b2503f35ec09b995c8ba246207ac9
MD5 06fcb67ca15ec8f46fa81af38b953eaa
BLAKE2b-256 612b8730ae61bf8ac44006e97de31f04ec8cb5bbe7c1e88354effcde7aa811b1

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231212-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231212-py3-none-any.whl
Algorithm Hash digest
SHA256 823274d0cd42aab34c9ed708ff415917993e209b500818ae4ab109a73325925e
MD5 a4ff48f0428165c704d824500e365548
BLAKE2b-256 0820a13a21a8f8336798db330385708e9e105ee112095cac45d8e10fd690fc35

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page