Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231213.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231213-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231213.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231213.tar.gz
Algorithm Hash digest
SHA256 9e83639dc5bb597d2f0a4f8fb972802d8eba16a40a69c7b0a3deaeaf7d40be6a
MD5 bc3a3951a7990ae63eae66d1d9f2adb5
BLAKE2b-256 d74bcaad8d9317f7e9168b0f21850d9c35e99116fbc98cdc1f2de5b4ce8a9fb3

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231213-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231213-py3-none-any.whl
Algorithm Hash digest
SHA256 f1fa0bc9ff0b198b5f4ba2b1b7d6beaa7793083526122d91670716db68c99856
MD5 efd235bf1e6198553c75c63b286c48ce
BLAKE2b-256 ecdc06b0422fc7ac4cef646b0ee7ad005c90a55405dda602e0199d0df21ed28c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page