Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231214.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231214-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231214.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231214.tar.gz
Algorithm Hash digest
SHA256 9adb60b57c46cfb9f73d08d40a96070ae2758abb1ffb45fccf88a7f9fb3b6319
MD5 49bbea0ad22005e895e5398f1f388cc8
BLAKE2b-256 80b54ae6a9130fba5b6cf440b8ef572de084a10582bb4a2816c6766178c4457d

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231214-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231214-py3-none-any.whl
Algorithm Hash digest
SHA256 08012e9a3247a9a619680024379e4362e0a8bf1daea7d0b31bb11ab303152651
MD5 977494cfdf99fec360be33c4acb5ba19
BLAKE2b-256 cc43e784c36f8b72f502bd33c272c2b19aeea6a2c67fc50caf505312431f9d6b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page