Skip to main content

Train and deploy AutoGluon backed models on the cloud

Project description

AutoGluon-Cloud

Continuous Integration

AutoGluon-Cloud aims to provide user tools to train, fine-tune and deploy AutoGluon backed models on the cloud. With just a few lines of codes, users could train a model and perform inference on the cloud without worrying about MLOps details such as resource management.

Currently, AutoGluon-Cloud supports AWS SageMaker as the cloud backend.

Example

# First install package from terminal:
# pip install -U pip
# pip install -U setuptools wheel
# pip install autogluon.cloud==0.2.0  # You don't need to install autogluon itself locally

from autogluon.cloud import TabularCloudPredictor
import pandas as pd
train_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/train.csv")
test_data = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/Inc/test.csv")
predictor_init_args = {"label": "class"}  # init args you would pass to AG TabularPredictor
predictor_fit_args = {"train_data": train_data, "time_limit": 120}  # fit args you would pass to AG TabularPredictor
cloud_predictor = TabularCloudPredictor(cloud_output_path='YOUR_S3_BUCKET_PATH')
cloud_predictor.fit(predictor_init_args=predictor_init_args, predictor_fit_args=predictor_fit_args)
cloud_predictor.deploy()
result = cloud_predictor.predict_real_time(test_data)
cloud_predictor.cleanup_deployment()
# Batch inference
result = cloud_predictor.predict(test_data)

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

autogluon.cloud-0.2.1b20231215.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

autogluon.cloud-0.2.1b20231215-py3-none-any.whl (81.2 kB view details)

Uploaded Python 3

File details

Details for the file autogluon.cloud-0.2.1b20231215.tar.gz.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231215.tar.gz
Algorithm Hash digest
SHA256 e7fc459625982871d9f8012ea50a79868e0c1a151a9eafe0f20ca2a03e30e31f
MD5 c98ff36a9ec66da19d0b627f2ed7d49f
BLAKE2b-256 32ec2d275e5ac54fd2c6f1ea6403d2d175a6f05292bee4a7df669e3f4562419d

See more details on using hashes here.

File details

Details for the file autogluon.cloud-0.2.1b20231215-py3-none-any.whl.

File metadata

File hashes

Hashes for autogluon.cloud-0.2.1b20231215-py3-none-any.whl
Algorithm Hash digest
SHA256 65e4271b15a3dd4b53b74ca66cbe91d52094603cbb61100cac9501e2be1cd106
MD5 e9d4bba93160b60c6b698812e45df244
BLAKE2b-256 fbc1413412827b7bf2c42f873896761e23520b8bb4f144b01b512c6593053daf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page